72 research outputs found

    Surface cracking behavior and its influence on interfacial delamination of thermal barrier coating

    Get PDF
    Thermal barrier coating (TBC) is widely used to lower the temperature of turbine blades and prevent the premature failure of superalloy substrates. Horizontal and vertical cracks play key roles in the thermal durability of TBC. It is believed that the surface cracks, which form perpendicular to the substrate surface, have a promising potential to improve the thermal life of TBC by increasing coating tolerance to thermal mismatch stresses. In contrast, as the density of horizontal cracks, especially the interfacial delamination increases TBC life decreases and TBC generally fails by coating spalling. This study aims to identify the surface cracking behavior of TBC and its influence on interfacial delamination. Multiple cracking behaviors in a thin elastic film bonded to a thick elastic substrate are firstly investigated by varying the morphology of segmentation cracks. Then, the effect of periodic surface cracks on the interfacial fracture is studied. It is found that surface crack spacing has significant effect on the initiation and propagation of interfacial delamination. A critical value is obtained based on the dependence of energy release rate on the surface crack density. The failure mechanisms of an advanced double-ceramic-layer TBC are also examined. It is found that the interface between two ceramic layers may directly influence the lifetime of TBC

    Natural Language Interfaces for Tabular Data Querying and Visualization: A Survey

    Full text link
    The emergence of natural language processing has revolutionized the way users interact with tabular data, enabling a shift from traditional query languages and manual plotting to more intuitive, language-based interfaces. The rise of large language models (LLMs) such as ChatGPT and its successors has further advanced this field, opening new avenues for natural language processing techniques. This survey presents a comprehensive overview of natural language interfaces for tabular data querying and visualization, which allow users to interact with data using natural language queries. We introduce the fundamental concepts and techniques underlying these interfaces with a particular emphasis on semantic parsing, the key technology facilitating the translation from natural language to SQL queries or data visualization commands. We then delve into the recent advancements in Text-to-SQL and Text-to-Vis problems from the perspectives of datasets, methodologies, metrics, and system designs. This includes a deep dive into the influence of LLMs, highlighting their strengths, limitations, and potential for future improvements. Through this survey, we aim to provide a roadmap for researchers and practitioners interested in developing and applying natural language interfaces for data interaction in the era of large language models.Comment: 20 pages, 4 figures, 5 tables. Submitted to IEEE TKD

    An efficient electromagnetic and thermal modelling of eddy current pulsed thermography for quantitative evaluation of blade fatigue cracks in heavy-duty gas turbines

    Get PDF
    The blade surface fatigue cracks often occur during service of Heavy-Duty Gas Turbines (HDGT) in high temperature, high rotational velocity and high frequency vibration environment. These fatigue cracks seriously threaten the safe operation of heavy-duty gas turbines, which would cause significant hazard or economic loss. The quantitative evaluation of blade surface fatigue cracks is extremely significant to HDGT. Eddy current pulsed thermography (ECPT) is an emerging non-destructive testing technology and show great potential for fatigue crack evaluation. This paper proposes a novel electromagnetic and thermal modelling of ECPT to achieve fast and effective quantitative evaluation for surface fatigue cracks. First, the proposed numerical method calculates electromagnetic field using the reduced magnetic vector potential method in the frequency domain based on frequency series method. The thermal source is transformed to an equivalent and simple form according to the energy equivalent method. Second, the temperature signals of ECPT are calculated through the time-domain iteration strategy with a relatively large time step. Then the ECPT experimental setup is established and the developed simulator is validated numerically and experimentally. The developed simulator is five times faster than the previous one and can be applied to eddy current thermography (ECT) with any kind of excitation waveforms. Finally, the depth of surface fatigue crack is quantitatively evaluated by means of the developed simulator, which is not only a promising simulation progress for ECPT, but also can be an effective tool embedded HDGT though-life maintenanc

    A Novel Small Molecule Inhibitor of Hepatitis C Virus Entry

    Get PDF
    Small molecule inhibitors of hepatitis C virus (HCV) are being developed to complement or replace treatments with pegylated interferons and ribavirin, which have poor response rates and significant side effects. Resistance to these inhibitors emerges rapidly in the clinic, suggesting that successful therapy will involve combination therapy with multiple inhibitors of different targets. The entry process of HCV into hepatocytes represents another series of potential targets for therapeutic intervention, involving viral structural proteins that have not been extensively explored due to experimental limitations. To discover HCV entry inhibitors, we utilized HCV pseudoparticles (HCVpp) incorporating E1-E2 envelope proteins from a genotype 1b clinical isolate. Screening of a small molecule library identified a potent HCV-specific triazine inhibitor, EI-1. A series of HCVpp with E1-E2 sequences from various HCV isolates was used to show activity against all genotype 1a and 1b HCVpp tested, with median EC50 values of 0.134 and 0.027 Β΅M, respectively. Time-of-addition experiments demonstrated a block in HCVpp entry, downstream of initial attachment to the cell surface, and prior to or concomitant with bafilomycin inhibition of endosomal acidification. EI-1 was equally active against cell-culture adapted HCV (HCVcc), blocking both cell-free entry and cell-to-cell transmission of virus. HCVcc with high-level resistance to EI-1 was selected by sequential passage in the presence of inhibitor, and resistance was shown to be conferred by changes to residue 719 in the carboxy-terminal transmembrane anchor region of E2, implicating this envelope protein in EI-1 susceptibility. Combinations of EI-1 with interferon, or inhibitors of NS3 or NS5A, resulted in additive to synergistic activity. These results suggest that inhibitors of HCV entry could be added to replication inhibitors and interferons already in development

    Influence of the Hydrogen Doping Method on the Atomic Structure, Mechanical Properties and Relaxation Behaviors of Metallic Glasses

    No full text
    The interaction of metallic glasses (MGs) with hydrogen can trigger many interesting physical, chemical and mechanical phenomena. However, atomic-scale understanding is still lacking. In this work, molecular dynamics (MD) simulations are employed to study the atomic structure, mechanical properties and relaxation behaviors of H-doped Ni50Al50 MGs doped by two methods. The properties of H-doped MGs are determined not only by the hydrogen content but also by the doping method. When H atoms are doped into the molten state of samples, H atoms can fully diffuse and interact with metallic atoms, resulting in loose local atomic structures, homogeneous deformation and enhanced Ξ² relaxation. In contrast, when H atoms are doped into as-cast MGs, the H content is crucial in affecting the atomic structure and mechanical properties. A small number of H atoms has little influence on the elastic matrix, while the percolation of shear transformation zones (STZs) is hindered by H atoms, resulting in the delay of shear band (SB) formation and an insignificant change in the strength. However, a large number of H atoms can make the elastic matrix loose, leading to the decrease in strength and the transition of the deformation mode from SB to homogeneous deformation. The H effects on the elastic matrix and flow units are also applied to the dynamic relaxation. The deformability of H-doped Ni50Al50 MGs is enhanced by both H-doping methods; however, our results reveal that the mechanisms are different

    Development and Application of Infrared Thermography Non-Destructive Testing Techniques

    No full text
    Effective testing of defects in various materials is an important guarantee to ensure its safety performance. Compared with traditional non-destructive testing (NDT) methods, infrared thermography is a new NDT technique which has developed rapidly in recent years. Its core technologies include thermal excitation and infrared image processing. In this paper, several main infrared thermography nondestructive testing techniques are reviewed. Through the analysis and comparison of the detection principle, technical characteristics and data processing methods of these testing methods, the development of the infrared thermography nondestructive testing technique is presented. Moreover, the application and development trend are summarized

    Long-Term Failure Mechanisms of Thermal Barrier Coatings in Heavy-Duty Gas Turbines

    No full text
    Thermal barrier coatings serve as thermal insulation and antioxidants on the surfaces of hot components. Different from the frequent thermal cycles of aero-engines, a heavy-duty gas turbine experiences few thermal cycles and continuously operates with high-temperature gas over 8000 h. Correspondingly, their failure mechanisms are different. The long-term failure mechanisms of the thermal barrier coatings in heavy-duty gas turbines are much more important. In this work, two long-term failure mechanisms are reviewed, i.e., oxidation and diffusion. It is illustrated that the growth of a uniform mixed oxide layer and element diffusion in thermal barrier coatings are responsible for the changes in mechanical performance and failures. Moreover, the oxidation of bond coat and the interdiffusion of alloy elements can affect the distribution of elements in thermal barrier coatings and then change the phase component. In addition, according to the results, it is suggested that suppressing the growth rate of uniform mixed oxide and oxygen diffusion can further prolong the service life of thermal barrier coatings
    • …
    corecore